Resources
Proteomics Databases

Metabolomics Databases

-
• Mechanism of Protein Interaction Network Analysis
Within cells, proteins carry out and regulate biological functions through intricate interaction networks. The integration of relationships among individual proteins constructs a cellular regulatory map, enabling scientists to uncover the core mechanisms behind signal transduction, metabolic regulation, and gene expression processes.
-
• Workflow of Protein Interaction Network Analysis
In modern molecular biology, the workflow of protein interaction network analysis has become central to understanding cellular functions and biological processes. By systematically mapping protein interactions, researchers can reveal complex biological mechanisms, identify new therapeutic targets, and provide insight into the molecular pathology of various diseases. As a result, the workflow of protein interaction network analysis finds applications across basic research and translational medicine.
-
• Analysis of Peptide Structure via LC-MS
Peptides, as the building blocks of proteins, perform various biological functions and possess wide-ranging applications. Analyzing peptide molecular structures accurately is particularly crucial for biomedicine and basic research. Liquid chromatography-mass spectrometry (LC-MS) technology, with its high separation capacity and sensitivity, has become a core tool in peptide structure analysis.
-
• Analysis of Peptide Purity via HPLC
High-Performance Liquid Chromatography (HPLC) is a widely utilized analytical tool employed to assess peptide purity, crucial in fields such as drug development, synthetic chemistry, and proteomics. Precise evaluation of peptide purity is essential for understanding its functionality, characteristics, and potential applications.
-
• Detection of Peptide Purity by RP-HPLC and Mass Spectrometry
Peptides play a vital role in biomedical and chemical research, particularly in drug development and biomarker discovery. Accurate determination of peptide purity is essential to ensure therapeutic efficacy and safety. The combined use of reverse-phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) is a commonly applied method in peptide purity analysis, providing high sensitivity and resolution.
-
• KEGG Pathway Enrichment Analysis Using KOBAS Software
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis is a powerful bioinformatics tool extensively used in genomics and proteomics research to identify functional distributions within gene or protein sets. KOBAS software, known for its accuracy and efficiency in pathway annotation and enrichment, is a preferred tool for large-scale omics data analysis. The KEGG database offers comprehensive information on biological pathways, including metabolic pathways, signaling cascades......
-
• Detection of Peptides Using HPLC
High-performance liquid chromatography (HPLC) is an analytical technique widely used for separating, detecting, and quantifying compounds. In recent years, HPLC has been extensively applied in the detection and quantification of peptides, particularly due to its excellent performance in separating peptides within complex sample mixtures. Peptides, as fragments of proteins, are significant in various biological research and biopharmaceutical fields due to their structural diversity.
-
• Detection of Protein Biomarkers Using Olink PEA
Protein biomarkers refer to protein molecules that reflect specific states of an organism, playing a crucial role in early disease diagnosis, prognosis, and therapeutic monitoring. With the rapid advancement of proteomics technologies, research on protein biomarkers has garnered significant attention.
-
• Comparative Analysis of Differential Protein Expression Using Proteomic Methods
Proteins play a central role in biological systems, serving as essential components for structural and functional processes. Variations in the expression levels of specific proteins are closely associated with cellular physiological adjustments. By leveraging proteomic methods, researchers can systematically detect and quantify protein changes across various conditions, providing insights into underlying molecular mechanisms. Proteomics investigates the composition, structure, function, and interact......
-
• Analysis of Chemical Proteomics Using Activity-Based Probes
Chemical proteomics is a research field aimed at uncovering the functions, activities, and roles of proteins in biological processes. As proteomic technologies have evolved, activity-based protein profiling (ABPP) has emerged as a powerful tool for studying the activity states of proteins and mechanisms of drug action. ABPP employs chemical probes that selectively bind to specific active sites on proteins, allowing for the targeted labeling, enrichment, and identification of active proteins.
How to order?