Resources
Proteomics Databases
Metabolomics Databases

-
• What Is the Differences Between Protein Acetylation and Acylation?
In cellular processes, protein post-translational modifications (PTMs) represent essential mechanisms for regulating protein function, stability, localization, and molecular interactions. Among them, protein acetylation and acylation are two major types of covalent modifications that attach specific chemical groups to defined amino acid residues, most commonly targeting the ε-amino group of lysine (Lys). Basic Definition: Acetylation as a Subclass of Acylation 1. Protein Acetylation Protein acetylati......
-
• Principles of Bottom-Up Proteomics
Bottom-up proteomics is currently one of the most widely used strategies in proteomic research. Its fundamental principle involves enzymatically digesting proteins into peptides, which are then analyzed using mass spectrometry (MS) to infer the identity and characteristics of the original proteins. The central concept of bottom-up proteomics is to first convert complex protein mixtures into smaller peptide fragments, followed by peptide identification and quantification via MS, thereby enabling the re......
-
• How Label-Free Quantification Facilitates Precise Profiling of Lactylated Proteins
In recent years, lactylation has emerged as a novel post-translational modification (PTM) with crucial roles in biological processes such as metabolic regulation, inflammatory response, and tumorigenesis. However, due to its low abundance, diverse modification sites, and the absence of highly specific antibodies, research on lactylated proteins faces considerable technical challenges. To enable accurate detection and quantification of these proteins, label-free quantification (LFQ) has become a prefer......
-
• Principles of PRM Quantitative Proteomics
Parallel Reaction Monitoring (PRM) is a targeted quantitative proteomic approach that employs high-resolution mass spectrometry. It has become an essential tool for advanced quantitative analysis in life sciences. Compared with the conventional Selected Reaction Monitoring (SRM) technique, PRM utilizes Orbitrap or Time-of-Flight (TOF) mass spectrometers to perform comprehensive monitoring of fragment ions, thereby achieving superior selectivity, sensitivity, and reproducibility. Working Principles o......
-
• Unveiling the Mechanisms of Protein Lactylation: From Metabolic Origin to Functional Implications
In recent years, lysine lactylation (Kla) has emerged as a novel post-translational modification (PTM) with increasing relevance in epigenetic regulation and cellular metabolism, gaining attention as a promising frontier in the post-genomic era. The identification of protein lactylation has significantly broadened our understanding of the interplay between metabolic flux and transcriptional regulation, offering new perspectives for investigating cancer, immune responses, and metabolic disorders. This ......
-
• SILAC-Based Strategies for Differential Protein Screening
Variations in protein expression levels serve as crucial indicators for elucidating biological processes, disease mechanisms, and pharmacological effects. However, due to the intrinsic complexity of proteins and their broad dynamic expression range, achieving accurate and reproducible protein quantification remains a technical challenge in proteomics. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) has emerged to address this issue. SILAC-based differential protein screening incorporate......
-
• How Does Lactylation Influence Protein–Molecule Interactions?
Protein–molecule interactions represent fundamental biological processes that underlie essential cellular functions such as signal transduction, transcriptional regulation, substrate recognition, and macromolecular complex assembly. Post-translational modifications (PTMs), which covalently modify amino acid residues, play pivotal roles in modulating the three-dimensional conformation, chemical properties, and binding capacities of proteins. As a recently identified type of PTM, lysine lactylation (Kla......
-
• How Does PRM Technology Facilitate the Analysis of Low-Abundance Proteins?
In proteomics research and clinical translational applications, the quantitative detection of low-abundance proteins remains a major technical challenge. Although these proteins are expressed at very low levels, they often possess high biological significance, such as cytokines, transcription factors, inflammatory mediators, and early disease biomarkers. The conventional Data-Dependent Acquisition (DDA) approach is limited by acquisition depth and dynamic range, making it difficult to achieve consiste......
-
• What Is Acylation Proteomics?
Acylation proteomics refers to the systematic identification and quantification of protein acylation sites and their dynamic alterations in cells or tissues using high-throughput mass spectrometry. As an important branch of proteomics, it focuses on the comprehensive characterization of acyl-type post-translational modifications (PTMs). Definition of Protein Acylation Protein acylation is a class of post-translational modifications in which diverse acyl groups are covalently attached to specific resi......
-
• What Is Co-Immunoprecipitation (Co-IP)?
In routine laboratory research focused on protein function and signal transduction pathways, co-immunoprecipitation (Co-IP) is a fundamental technique encountered by nearly all life-science researchers. It is widely regarded as one of the gold-standard methods for validating protein–protein interactions and serves as an essential bridge linking immunology with modern proteomics and mass spectrometry technologies. Fundamental Principle of Co-Immunoprecipitation Co-immunoprecipitation is an immunoaffin......
How to order?
